A Weyl Calculus on Symplectic Phase Space
نویسنده
چکیده
We study the twisted Weyl symbol of metaplectic operators; this requires the definition of an index for symplectic paths related to the Conley–Zehnder index. We thereafter define a metaplectically covariant algebra of pseudo-differential operators acting on functions on symplectic space.
منابع مشابه
Elements of a Theory of Symplectic Covariant Schrödinger Equations in Phase Space
A classical theorem of Stone and von Neumann says that the Schrödinger representation is, up to unitary equivalences, the only irreducible representation of the Heisenberg group on the Hilbert space of square-integrable functions on configuration space. Using the Wigner-Moyal transform we construct an irreducible representation of the Heisenberg group on a certain Hilbert space of square-integr...
متن کاملA pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These o...
متن کاملThe Wigner-Weyl-Moyal Formalism on Algebraic Structures
We first introduce the Wigner-Weyl-Moyal formalism for a theory whose phase-space is an arbitrary Lie algebra. We also generalize to quantum Lie algebras and to supersymmetric theories. It turns out that the non-commutativity leads to a deformation of the classical phase-space: instead of being a vector space it becomes a manifold, the topology of which is given by the commutator relations. It ...
متن کاملGeometrical origin of the ∗-product in the Fedosov formalism
The construction of the ∗-product proposed by Fedosov is implemented in terms of the theory of fibre bundles. The geometrical origin of the Weyl algebra and the Weyl bundle is shown. Several properties of the product in the Weyl algebra are proved. Symplectic and abelian connections in the Weyl algebra bundle are introduced. Relations between them and the symplectic connection on a phase space ...
متن کاملRemarks on the Structure of Clifford Quantum Cellular Automata
We report here on the structure of reversible quantum cellular automata with the additional restriction that these are also Clifford operations. This means that tensor products of Weyl operators (projective representation of a finite abelian symplectic group) are mapped to multiples of tensor products of Weyl operators. Therefore Clifford quantum cellular automata are induced by symplectic cell...
متن کامل